Arduino USB Board (Uno R3)


29.45 USD
$29.45 ea.

The Arduino Uno is the all-new replacement for the favourite and popular Arduino Duemilanove. Now shipping R3!

Description [Hide]

Our take on it: Below is mostly copied from the description of the new Arduino Uno. As we haven't had much chance to play with it, but were in attendance at the Maker Faire / OpenHardwareSummit, here's the gist of what the differences are between it and the Duemilanove:

  • Functionality increase? No, not much. It uses the same microcontroller as before, but is on a new re-branded board ("Uno") with slicker packaging & graphics. Oh, and a logo too!
  • The pin labels are a bit tighter, and better show how they are used (hardware PWM is marked with a "~")
  • Stickers! And neat paperwork explaining warranty, how it was made and tested, and how each purchase helps protect a 1/2 square meter of Madagascar forest. Cool.
  • CE / FCC certification. This is an important one, which assures electronics performance & noise control. Not an inexpensive proposition - kudos on getting this certification!
  • Smaller bootloader - gives you more space for code for sketches!
  • Better 3.3V regulator on board (old 3.3V came from FTDI chip, which was a bit wimpy)
  • MOST IMPORTANT CHANGE: Replacement of the FTDI USB/TTL interface chip with an ATmega8U2 microcontroller. It's apparently cheaper, faster and definitely a whole lot more flexible. There's even a separate ICSP header on the UNO to let you reprogram this second microcontroller to make your Arduino UNO appear to be something vastly different USB device to your operating system.

In all, it's definitely a refinement to the Arduino Duemilanove, but it's not an earth-shattering change in Arduino philosophy (until somebody comes up with a super-cool hack for the USB chip). That all said, here's the official release text from Arduino:


The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started.

The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega16U2 (Atmega8U2 up to version R2) programmed as a USB-to-serial converter.

Revision 2 of the Uno board has a resistor pulling the 8U2 HWB line to ground, making it easier to put into DFU mode.

Revision 3 of the board has the following new features:

  • 1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two other new pins placed near to the RESET pin, the IOREF that allow the shields to adapt to the voltage provided from the board. In future, shields will be compatible both with the board that use the AVR, which operate with 5V and with the Arduino Due that operate with 3.3V. The second one is a not connected pin, that is reserved for future purposes.
  • Stronger RESET circuit.
  • Atmega 16U2 replace the 8U2.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno and version 1.0 will be the reference versions of Arduino, moving forward. The Uno is the latest in a series of USB Arduino boards, and the reference model for the Arduino platform; for a comparison with previous versions, see the index of Arduino boards.


  • Microcontroller -ATmega328
  • Operating Voltage -5V
  • Input Voltage (recommended) -7-12V
  • Input Voltage (limits) -6-20V
  • Digital I/O Pins -14 (of which 6 provide PWM output)
  • Analog Input Pins -6
  • DC Current per I/O Pin -40 mA
  • DC Current for 3.3V Pin -50 mAFlash Memory -32 KB (ATmega328) of which 0.5 KB used by bootloader
  • SRAM -2 KB (ATmega328)
  • EEPROM -1 KB (ATmega328)Clock Speed -16MHz
Schematic & Reference Design

Note: The Arduino reference design can use an Atmega8, 168, or 328, Current models use an ATmega328, but an Atmega8 is shown in the schematic for reference. The pin configuration is identical on all three processors.


The Arduino Uno can be powered via the USB connection or with an external power supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

  • VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
  • 5V. The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
  • 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
  • GND. Ground pins.

The ATmega328 has 32 KB (with 0.5 KB used for the bootloader). It also has 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Input and Output

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

  • Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.
  • External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
  • PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication using the SPI library.
  • LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and the analogReference() function. Additionally, some pins have specialized functionality:

  • TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the Wire library.

There are a couple of other pins on the board:

  • AREF. Reference voltage for the analog inputs. Used with analogReference().
  • Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

See also the mapping between Arduino pins and ATmega328 ports. The mapping for the Atmega8, 168, and 328 is identical.


The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An ATmega16U2 on the board channels this serial communication over USB and appears as a virtual com port to software on the computer. The '16U2 firmware uses the standard USB COM drivers, and no external driver is needed. However, on Windows, a .inf file is required. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-serial chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus; see the documentation for details. For SPI communication, use the SPI library.


The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno from the Tools > Board menu (according to the microcontroller on your board). For details, see the reference and tutorials.

The ATmega328 on the Arduino Uno comes pre-burned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header; see these instructions for details.

The ATmega16U2 (or 8U2 in the rev1 and rev2 boards) firmware source code is available . The ATmega16U2/8U2 is loaded with a DFU bootloader, which can be activated by:

  • On Rev1 boards: connecting the solder jumper on the back of the board (near the map of Italy) and then resetting the 8U2.
  • On Rev2 or later boards: there is a resistor that pulling the 8U2/16U2 HWB line to ground, making it easier to put into DFU mode.

You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X and Linux) to load a new firmware. Or you can use the ISP header with an external programmer (overwriting the DFU bootloader). See this user-contributed tutorial for more information.

Automatic (Software) Reset

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2/16U2 is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Uno is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

USB Overcurrent Protection

The Arduino Uno has a resettable polyfuse that protects your computer's USB ports from shorts and overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed.

Physical Characteristics

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector and power jack extending beyond the former dimension. Four screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins.

Documentation [Hide]

You Might Also Like [Hide]


Breadboard Jumper Wire Bundle

This 70-piece flexible wire jumper kit is sure to replace your old-style solid-wire jumpers. These are more flexible, robust, and easy to use!

$6.00 USD


Standard LED

Standard sized diffused T1-3/4 LEDs, great for indicators. Available in green, red, yellow, white and blue.

$0.30 USD


Single Panel Breadboard

This breadboard is high quality and features nickel plated contacts in order to insure very low clip resistance and durability in order to insure that the board will work for years to come.

$4.95 USD


CdS Light Sensitive Resistor

The CdS is a light sensitive resistor offering a range of 160 ohm to 700k sensitivity.

$1.35 USD


The Solarbotics SketchBoard

A fully assembled surface mount Arduino-compatible.

$17.50 USD


Netduino Go Starter Kit

Love the Netduino but not a big fan of pulling out the ol' soldering iron when it comes to prototyping with it? The Netduino Go Starter Kit gives users the ability to interface Godbus modules to the Go for quick and easy plug-and-play projects.

$29.99 USD


Nanode v5 Kit

Nanode is an open source Arduino-like board that has in-built web connectivity. It is a low cost platform for creative development of web connected ideas.

$7.60 USD

K SV-Atmel

Solarbotics Sumovore Atmel Brainboard V2.0

This Sumovore add-on brainboard replaces the standard discrete logic brain with a powerful, programmable microcontroller! (Requires host product)

$20.95 USD


USB-A Always-in-right LED Light

Add a convenient bright-white USB LED to your kit. Works in either orientation, so you can't plug it in wrong in the dark of night.

$1.00 USD


SYSTEM 6-in-1 Universal Remote Control

A remote! Control! For controllify-ing all your remotes! Now this remote could be used as the classic universal type remote but hey what fun it that?!?! Use this remote to control Robots, scorpions, and other! Well maybe not scorpions but snakes for sure!

$5.00 USD





Remember Me

Forgot Your Password?

Don't Have an Account?
Sign Up!