Circuit: Shok

Dave Hrynkiw
July 12, 2007

ShokPopper & ShokPhoto-head

You want a simple Photovore? This very tidy design by Solarbotics' own Grant McKee is based on a technique developed by Mark Tilden - Shok architecture:

Here's video of the test robots being tuned as a 177kB Windows Media Format (WMV) file or as a 168kB RealMedia (RM) file.

ShokPopper V1.0 (click for circuit diagram) - GrantM Aug 2001

Theory of operation:
"Shok" architecture is a technique pioneered by Mark Tilden describing controlled state changes of Bicore style circuits via chip power or enable toggling. When a Bicore circuit is powered on, it will resume a state opposite to what it was when it was powered off, this effect can either be duplicated by pulsing the enable line or by pulsing power to the chip itself. This is called "shoking" the Bicore. The power-on state can also be pre-determined by biasing the voltage across the Bicore capacitors. A photodiode attached directly across the Bicore charge capacitor will pre-bias the shoked output. The addition of tactile sensors is easily implemented by attaching a switch from the input of the Bicore to +Vdd. When the switch is closed, it forces that side high, presetting the state of the Bicore on the next pulse cycle.

Probably one of the simplest photovore circuits to date, the core circuit consists of a 6 part count and a solar-engine. Either 74AC240 or 74HCT240 will work but we recommend using the AC series for better output drive current. The ShokPopper will not work under battery power unless the enable line is pulsed.

Solar Engine to use with Shok:
The best solar-engine to use is the Miller engine. For the ShokPopper Photovore we used a Miller engine consisting of:

  • CP3300uf cap
  • 1381Q
  • CP1µf timer cap (0.47µf will work fine as well)
  • 2N2222 Transistor
  • SC3733 Solarcell
  • D1 1N914 Diode

The Bicore Circuit Consists of:

  • 74AC240 Octal Buffer Chip
  • TR100k Trimpot
  • 2 x 0.22µF Capacitors
  • 2 x IR1 Infrared Sensors
  • 2 x RM1 Motors
  • TACT2 Spring Sensor Kit (Optional)

The Miller engine switches the ground line of the circuit.

The theory of operating is very similar to that of the shok popper except that the head now only uses one motor, the photo head does not "lock" on but will continually seek for the brightest source of light. Nice effect if you want a continually seeking, dynamic device on a stationary base.

  • 74AC240 Octal buffer chip
  • 4 x CP0.1µF capacitors
  • 100k resistor
  • 2 x 47k resistors

MORE POSTS

February 28, 2013
Phones Are Down

Our phones are currently down for maintenance. We apologize for inconvenience, the phone service will resume shortly.

September 4, 2015
Closed for Labour Day

Our office will be closed on Monday September 7, we'll continue regular office hours on Tuesday at 0900 MST.

February 23, 2004
Robolympics?

We're thinking of coming out and hitting the pavement of Robolympics in March. Thinking of coming? Perhaps we'll see you there!

January 30, 2010
Free Ardweeny with ARDX!

Well, it's been one of those weeks where we don't have anything to post, so... HEY LOOK! THE ARDY IS BACK! From now until the end of March, the ARDY bundle gets you the Arduino Experimenter's Kit with a free Ardweeny. Oh, and did we mention that we just took a picture of (almost) all […]

1 11 12 13 14 15 253
Solarbotics Ltd Logo
Solarbotics has been operating for more than 25 years, bringing electronics know-how and supplies to both the electronics professional and hobbyist. We'll be happy to help you too!

Solarbotics, Ltd. is not responsible for misprints or errors on product prices or information. For more information, please see our Terms and Conditions.

Warning: This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.
Please visit www.P65Warnings.ca.gov for more information. This item was manufactured prior to August 31, 2018.

cart