I created this choker as a project to demonstrate the new MicroNova APA102-2020 LED strips.
Photo by Yeti, edited by Batgirl
These addressable LEDs are extremely small, less than 1/4 the size of a standard 5050 LED.
This project was built using engineering sample standard MicroNova 99 LED / meter strips . The MicroNova strips we are selling have 198/meter - twice the density!
Reason for a Choker necklace:
Hats have been done, shoes have been done, pendants have been done. This is something new for a Valentine’s dance costume, so I decided to go with a choker design. I also wanted something that was interactive, something that would add another layer of WOW to just lighting.
The Build:
I used a Wemos D1 Mini development board along with a boost-converting battery shield for the Wemos D1.
The battery shield was a particularly good choice here because the MicroNova LEDs should be supplied a solid 5VDC. This board boosts the battery voltage to 5V, and then the Wemos D1 Mini bucks it down to 3V3 for it's own operation.
A mini SPDT Slide switch toggles the power from the battery shield to the D1. This allows charging the battery using the battery shield USB connector while not powering the D1.
Epoxy locks the switch and wires in place.
The battery used is a conveniently handy older 450mAh Lithium Polymer. Depending on the lighting mode, this battery can power the necklace for a couple of hours.
I used elastic thread to attach the LED strip and components to the necklace. A heavy duty needle was all that was needed to punch through the (imitation) leather belt. Because the thread was elastic and tied under tension, it held the MicroNova strip well in place.
Operation:
When the choker powers up, it creates a WiFi Access Point called "HeartBurnChoker1".
Once I connected to this WiFi, I opened a browser and went to 192.168.4.1. The control interface is simple, but effective. The D1 Mini has more than ample power and speed to effectively drive these LEDs. The MicroNova features separate clock & data lines, so even relatively slow I/O (like Raspberry Pi) can still make it work.
Magnetic storage reaches the atomic level The magnetic field of a single atom is read and written, but it's not very stable (Via ArsTechnica) Magnificent Cardboard Airships by Jeroen van Kesteren Beautifully crafted and intricate fantastic ships made of cardboard (Via Colossal) Google X Levi's touch-sensitive denim jacket Embedded conductive threads make it touch and […]
Yes, it's true. After years of working our fingers to the bone inserting jumper wires on breadboards to make unusually robust controllers for robots out of discrete & logic chip elements, Solarbotics has seen the light! We've put on our eye-patch, hoisted the jolly-roger, and swung along-side to board the HMS HVWTech.com ! That's right […]
Solarbotics and HVW Tech will be at the Bay Area Maker Faire this weekend! If you have a chance to come out be sure to stop by and say hi, we'll be in our booth all day Saturday and Sunday. Also Dave will be doing a presentation in the workshop area over the weekend, so […]
Something Old, Something New, Something... something... Solarbotics!(Happy Turkey Day!) Solarbotics Herbie the Mousebot v2 Kit No turkey here; just a fast robot mouse. Medium soldering skill necessary to build this flashlight-chasing mousebot. $40.00USD / $52.00CAD 25% OFF: $30.00USD / $39.00CAD Solarbotics Turbot Tumbling Robot Kit This medium-complexity retro BEAM Robotics light-seeking tumbling robot is back for […]
Solarbotics has been operating for more than 25 years, bringing electronics know-how and supplies to both the electronics professional and hobbyist. We'll be happy to help you too!
Solarbotics, Ltd. is not responsible for misprints or errors on product prices or information. For more information, please see our Terms and Conditions.
Warning: This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. Please visit www.P65Warnings.ca.gov for more information. This item was manufactured prior to August 31, 2018.